Metamath Proof Explorer


Theorem iotaexeu

Description: The iota class exists. This theorem does not require ax-nul for its proof. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotaexeu ∃!xφιx|φV

Proof

Step Hyp Ref Expression
1 iotaval xφx=yιx|φ=y
2 1 eqcomd xφx=yy=ιx|φ
3 2 eximi yxφx=yyy=ιx|φ
4 eu6 ∃!xφyxφx=y
5 isset ιx|φVyy=ιx|φ
6 3 4 5 3imtr4i ∃!xφιx|φV