Metamath Proof Explorer


Theorem iotan0aiotaex

Description: If the iota over a wff ph is not empty, the alternate iota over ph is a set. (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion iotan0aiotaex ι x | φ ι V

Proof

Step Hyp Ref Expression
1 iotanul ¬ ∃! x φ ι x | φ =
2 1 necon1ai ι x | φ ∃! x φ
3 aiotaexb ∃! x φ ι V
4 2 3 sylib ι x | φ ι V