Metamath Proof Explorer


Theorem iotan0aiotaex

Description: If the iota over a wff ph is not empty, the alternate iota over ph is a set. (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion iotan0aiotaex ιx|φιV

Proof

Step Hyp Ref Expression
1 iotanul ¬∃!xφιx|φ=
2 1 necon1ai ιx|φ∃!xφ
3 aiotaexb ∃!xφιV
4 2 3 sylib ιx|φιV