Metamath Proof Explorer


Theorem ipge0

Description: The inner product in a subcomplex pre-Hilbert space is positive definite. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses reipcl.v V=BaseW
reipcl.h ,˙=𝑖W
Assertion ipge0 WCPreHilAV0A,˙A

Proof

Step Hyp Ref Expression
1 reipcl.v V=BaseW
2 reipcl.h ,˙=𝑖W
3 cphngp WCPreHilWNrmGrp
4 eqid normW=normW
5 1 4 nmcl WNrmGrpAVnormWA
6 3 5 sylan WCPreHilAVnormWA
7 6 sqge0d WCPreHilAV0normWA2
8 1 2 4 nmsq WCPreHilAVnormWA2=A,˙A
9 7 8 breqtrd WCPreHilAV0A,˙A