Metamath Proof Explorer


Theorem ipolt

Description: Strict order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses ipolt.i I=toIncF
ipolt.l <˙=<I
Assertion ipolt FVXFYFX<˙YXY

Proof

Step Hyp Ref Expression
1 ipolt.i I=toIncF
2 ipolt.l <˙=<I
3 eqid I=I
4 1 3 ipole FVXFYFXIYXY
5 4 anbi1d FVXFYFXIYXYXYXY
6 1 fvexi IV
7 3 2 pltval IVXFYFX<˙YXIYXY
8 6 7 mp3an1 XFYFX<˙YXIYXY
9 8 3adant1 FVXFYFX<˙YXIYXY
10 df-pss XYXYXY
11 10 a1i FVXFYFXYXYXY
12 5 9 11 3bitr4d FVXFYFX<˙YXY