Metamath Proof Explorer


Theorem ipval2lem3

Description: Lemma for ipval3 . (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1 X=BaseSetU
dipfval.2 G=+vU
dipfval.4 S=𝑠OLDU
dipfval.6 N=normCVU
dipfval.7 P=𝑖OLDU
Assertion ipval2lem3 UNrmCVecAXBXNAGB2

Proof

Step Hyp Ref Expression
1 dipfval.1 X=BaseSetU
2 dipfval.2 G=+vU
3 dipfval.4 S=𝑠OLDU
4 dipfval.6 N=normCVU
5 dipfval.7 P=𝑖OLDU
6 1 3 nvsid UNrmCVecBX1SB=B
7 6 oveq2d UNrmCVecBXAG1SB=AGB
8 7 fveq2d UNrmCVecBXNAG1SB=NAGB
9 8 oveq1d UNrmCVecBXNAG1SB2=NAGB2
10 9 3adant2 UNrmCVecAXBXNAG1SB2=NAGB2
11 ax-1cn 1
12 1 2 3 4 5 ipval2lem2 UNrmCVecAXBX1NAG1SB2
13 11 12 mpan2 UNrmCVecAXBXNAG1SB2
14 10 13 eqeltrrd UNrmCVecAXBXNAGB2