Metamath Proof Explorer


Theorem iresn0n0

Description: The identity function restricted to a class A is empty iff the class A is empty. (Contributed by AV, 30-Jan-2024)

Ref Expression
Assertion iresn0n0 A=IA=

Proof

Step Hyp Ref Expression
1 opab0 xy|xAy=x=xy¬xAy=x
2 opabresid IA=xy|xAy=x
3 2 eqeq1i IA=xy|xAy=x=
4 nel02 A=¬xA
5 4 intnanrd A=¬xAy=x
6 5 alrimivv A=xy¬xAy=x
7 ianor ¬xAy=x¬xA¬y=x
8 7 albii y¬xAy=xy¬xA¬y=x
9 19.32v y¬xA¬y=x¬xAy¬y=x
10 id ¬xA¬xA
11 ax6v ¬y¬y=x
12 11 pm2.21i y¬y=x¬xA
13 10 12 jaoi ¬xAy¬y=x¬xA
14 9 13 sylbi y¬xA¬y=x¬xA
15 8 14 sylbi y¬xAy=x¬xA
16 15 alimi xy¬xAy=xx¬xA
17 eq0 A=x¬xA
18 16 17 sylibr xy¬xAy=xA=
19 6 18 impbii A=xy¬xAy=x
20 1 3 19 3bitr4ri A=IA=