Metamath Proof Explorer


Theorem isbasis3g

Description: Express the predicate "the set B is a basis for a topology". Definition of basis in Munkres p. 78. (Contributed by NM, 17-Jul-2006)

Ref Expression
Assertion isbasis3g BCBTopBasesxBxBxByBxyxByBzxywBzwwxy

Proof

Step Hyp Ref Expression
1 isbasis2g BCBTopBasesxByBzxywBzwwxy
2 elssuni xBxB
3 2 rgen xBxB
4 eluni2 xByBxy
5 4 biimpi xByBxy
6 5 rgen xByBxy
7 3 6 pm3.2i xBxBxByBxy
8 7 biantrur xByBzxywBzwwxyxBxBxByBxyxByBzxywBzwwxy
9 df-3an xBxBxByBxyxByBzxywBzwwxyxBxBxByBxyxByBzxywBzwwxy
10 8 9 bitr4i xByBzxywBzwwxyxBxBxByBxyxByBzxywBzwwxy
11 1 10 bitrdi BCBTopBasesxBxBxByBxyxByBzxywBzwwxy