Metamath Proof Explorer


Theorem isbasisg

Description: Express the predicate "the set B is a basis for a topology". (Contributed by NM, 17-Jul-2006)

Ref Expression
Assertion isbasisg BCBTopBasesxByBxyB𝒫xy

Proof

Step Hyp Ref Expression
1 ineq1 z=Bz𝒫xy=B𝒫xy
2 1 unieqd z=Bz𝒫xy=B𝒫xy
3 2 sseq2d z=Bxyz𝒫xyxyB𝒫xy
4 3 raleqbi1dv z=Byzxyz𝒫xyyBxyB𝒫xy
5 4 raleqbi1dv z=Bxzyzxyz𝒫xyxByBxyB𝒫xy
6 df-bases TopBases=z|xzyzxyz𝒫xy
7 5 6 elab2g BCBTopBasesxByBxyB𝒫xy