Metamath Proof Explorer


Theorem isclwlkupgr

Description: Properties of a pair of functions to be a closed walk (in a pseudograph). (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 11-Apr-2021) (Revised by AV, 28-Oct-2021)

Ref Expression
Hypotheses isclwlke.v V=VtxG
isclwlke.i I=iEdgG
Assertion isclwlkupgr GUPGraphFClWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1P0=PF

Proof

Step Hyp Ref Expression
1 isclwlke.v V=VtxG
2 isclwlke.i I=iEdgG
3 isclwlk FClWalksGPFWalksGPP0=PF
4 1 2 upgriswlk GUPGraphFWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1
5 4 anbi1d GUPGraphFWalksGPP0=PFFWorddomIP:0FVk0..^FIFk=PkPk+1P0=PF
6 3an4anass FWorddomIP:0FVk0..^FIFk=PkPk+1P0=PFFWorddomIP:0FVk0..^FIFk=PkPk+1P0=PF
7 5 6 bitrdi GUPGraphFWalksGPP0=PFFWorddomIP:0FVk0..^FIFk=PkPk+1P0=PF
8 3 7 bitrid GUPGraphFClWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1P0=PF