Metamath Proof Explorer


Theorem iscnrm2

Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion iscnrm2 JTopOnXJCNrmx𝒫XJ𝑡xNrm

Proof

Step Hyp Ref Expression
1 topontop JTopOnXJTop
2 eqid J=J
3 2 iscnrm JCNrmJTopx𝒫JJ𝑡xNrm
4 3 baib JTopJCNrmx𝒫JJ𝑡xNrm
5 1 4 syl JTopOnXJCNrmx𝒫JJ𝑡xNrm
6 toponuni JTopOnXX=J
7 6 pweqd JTopOnX𝒫X=𝒫J
8 7 raleqdv JTopOnXx𝒫XJ𝑡xNrmx𝒫JJ𝑡xNrm
9 5 8 bitr4d JTopOnXJCNrmx𝒫XJ𝑡xNrm