Metamath Proof Explorer


Theorem iscnrm3rlem1

Description: Lemma for iscnrm3rlem2 . The hypothesis could be generalized to ( ph -> ( S \ T ) C_ X ) . (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Hypothesis iscnrm3rlem1.1 φ S X
Assertion iscnrm3rlem1 φ S T = S X S T

Proof

Step Hyp Ref Expression
1 iscnrm3rlem1.1 φ S X
2 difindi X S T = X S X T
3 2 ineq2i S X S T = S X S X T
4 indi S X S X T = S X S S X T
5 disjdif S X S =
6 5 uneq1i S X S S X T = S X T
7 0un S X T = S X T
8 indif2 S X T = S X T
9 6 7 8 3eqtri S X S S X T = S X T
10 3 4 9 3eqtri S X S T = S X T
11 df-ss S X S X = S
12 1 11 sylib φ S X = S
13 12 difeq1d φ S X T = S T
14 10 13 eqtr2id φ S T = S X S T