Metamath Proof Explorer


Theorem iscrng

Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypothesis ringmgp.g G=mulGrpR
Assertion iscrng RCRingRRingGCMnd

Proof

Step Hyp Ref Expression
1 ringmgp.g G=mulGrpR
2 fveq2 r=RmulGrpr=mulGrpR
3 2 1 eqtr4di r=RmulGrpr=G
4 3 eleq1d r=RmulGrprCMndGCMnd
5 df-cring CRing=rRing|mulGrprCMnd
6 4 5 elrab2 RCRingRRingGCMnd