Description: It is sufficient to prove that the double orthocomplement is a subset of the target set to show that the set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cssss.v | |
|
cssss.c | |
||
ocvcss.o | |
||
Assertion | iscss2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cssss.v | |
|
2 | cssss.c | |
|
3 | ocvcss.o | |
|
4 | 3 2 | iscss | |
5 | 4 | adantr | |
6 | 1 3 | ocvocv | |
7 | eqss | |
|
8 | 7 | baib | |
9 | 6 8 | syl | |
10 | 5 9 | bitrd | |