Metamath Proof Explorer


Theorem iscss2

Description: It is sufficient to prove that the double orthocomplement is a subset of the target set to show that the set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssss.v V=BaseW
cssss.c C=ClSubSpW
ocvcss.o ˙=ocvW
Assertion iscss2 WPreHilSVSC˙˙SS

Proof

Step Hyp Ref Expression
1 cssss.v V=BaseW
2 cssss.c C=ClSubSpW
3 ocvcss.o ˙=ocvW
4 3 2 iscss WPreHilSCS=˙˙S
5 4 adantr WPreHilSVSCS=˙˙S
6 1 3 ocvocv WPreHilSVS˙˙S
7 eqss S=˙˙SS˙˙S˙˙SS
8 7 baib S˙˙SS=˙˙S˙˙SS
9 6 8 syl WPreHilSVS=˙˙S˙˙SS
10 5 9 bitrd WPreHilSVSC˙˙SS