Metamath Proof Explorer


Theorem iscvs

Description: A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021)

Ref Expression
Assertion iscvs W ℂVec W CMod Scalar W DivRing

Proof

Step Hyp Ref Expression
1 df-cvs ℂVec = CMod LVec
2 1 elin2 W ℂVec W CMod W LVec
3 clmlmod W CMod W LMod
4 eqid Scalar W = Scalar W
5 4 islvec W LVec W LMod Scalar W DivRing
6 5 a1i W CMod W LVec W LMod Scalar W DivRing
7 3 6 mpbirand W CMod W LVec Scalar W DivRing
8 7 pm5.32i W CMod W LVec W CMod Scalar W DivRing
9 2 8 bitri W ℂVec W CMod Scalar W DivRing