Metamath Proof Explorer


Theorem iscvs

Description: A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021)

Ref Expression
Assertion iscvs WℂVecWCModScalarWDivRing

Proof

Step Hyp Ref Expression
1 df-cvs ℂVec=CModLVec
2 1 elin2 WℂVecWCModWLVec
3 clmlmod WCModWLMod
4 eqid ScalarW=ScalarW
5 4 islvec WLVecWLModScalarWDivRing
6 5 a1i WCModWLVecWLModScalarWDivRing
7 3 6 mpbirand WCModWLVecScalarWDivRing
8 7 pm5.32i WCModWLVecWCModScalarWDivRing
9 2 8 bitri WℂVecWCModScalarWDivRing