Metamath Proof Explorer


Theorem iscvsi

Description: Properties that determine a subcomplex vector space. (Contributed by NM, 5-Nov-2006) (Revised by AV, 4-Oct-2021)

Ref Expression
Hypotheses iscvsp.t ·˙=W
iscvsp.a +˙=+W
iscvsp.v V=BaseW
iscvsp.s S=ScalarW
iscvsp.k K=BaseS
iscvsi.1 WGrp
iscvsi.2 S=fld𝑠K
iscvsi.3 SDivRing
iscvsi.4 KSubRingfld
iscvsi.5 xV1·˙x=x
iscvsi.6 yKxVy·˙xV
iscvsi.7 yKxVzVy·˙x+˙z=y·˙x+˙y·˙z
iscvsi.8 yKzKxVz+y·˙x=z·˙x+˙y·˙x
iscvsi.9 yKzKxVzy·˙x=z·˙y·˙x
Assertion iscvsi WℂVec

Proof

Step Hyp Ref Expression
1 iscvsp.t ·˙=W
2 iscvsp.a +˙=+W
3 iscvsp.v V=BaseW
4 iscvsp.s S=ScalarW
5 iscvsp.k K=BaseS
6 iscvsi.1 WGrp
7 iscvsi.2 S=fld𝑠K
8 iscvsi.3 SDivRing
9 iscvsi.4 KSubRingfld
10 iscvsi.5 xV1·˙x=x
11 iscvsi.6 yKxVy·˙xV
12 iscvsi.7 yKxVzVy·˙x+˙z=y·˙x+˙y·˙z
13 iscvsi.8 yKzKxVz+y·˙x=z·˙x+˙y·˙x
14 iscvsi.9 yKzKxVzy·˙x=z·˙y·˙x
15 8 7 pm3.2i SDivRingS=fld𝑠K
16 6 15 9 3pm3.2i WGrpSDivRingS=fld𝑠KKSubRingfld
17 11 ancoms xVyKy·˙xV
18 12 3com12 xVyKzVy·˙x+˙z=y·˙x+˙y·˙z
19 18 3expa xVyKzVy·˙x+˙z=y·˙x+˙y·˙z
20 19 ralrimiva xVyKzVy·˙x+˙z=y·˙x+˙y·˙z
21 13 14 jca yKzKxVz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
22 21 3comr xVyKzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
23 22 3expa xVyKzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
24 23 ralrimiva xVyKzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
25 17 20 24 3jca xVyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
26 25 ralrimiva xVyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
27 10 26 jca xV1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
28 27 rgen xV1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
29 1 2 3 4 5 iscvsp WℂVecWGrpSDivRingS=fld𝑠KKSubRingfldxV1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
30 16 28 29 mpbir2an WℂVec