Metamath Proof Explorer


Theorem cvsi

Description: The properties of a subcomplex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. (Contributed by NM, 3-Nov-2006) (Revised by AV, 21-Sep-2021)

Ref Expression
Hypotheses cvsi.x X=BaseW
cvsi.a +˙=+W
cvsi.s S=BaseScalarW
cvsi.m ˙=𝑠𝑓W
cvsi.t ·˙=W
Assertion cvsi WℂVecWAbelS˙:S×XXxX1·˙x=xySzXy·˙x+˙z=y·˙x+˙y·˙zzSy+z·˙x=y·˙x+˙z·˙xyz·˙x=y·˙z·˙x

Proof

Step Hyp Ref Expression
1 cvsi.x X=BaseW
2 cvsi.a +˙=+W
3 cvsi.s S=BaseScalarW
4 cvsi.m ˙=𝑠𝑓W
5 cvsi.t ·˙=W
6 df-cvs ℂVec=CModLVec
7 6 elin2 WℂVecWCModWLVec
8 lveclmod WLVecWLMod
9 lmodabl WLModWAbel
10 8 9 syl WLVecWAbel
11 10 adantl WCModWLVecWAbel
12 eqid ScalarW=ScalarW
13 12 3 clmsscn WCModS
14 clmlmod WCModWLMod
15 1 12 3 4 lmodscaf WLMod˙:S×XX
16 14 15 syl WCMod˙:S×XX
17 13 16 jca WCModS˙:S×XX
18 17 adantr WCModWLVecS˙:S×XX
19 1 5 clmvs1 WCModxX1·˙x=x
20 14 adantr WCModxXWLMod
21 20 ad2antrr WCModxXySzXWLMod
22 simplr WCModxXySzXyS
23 simpllr WCModxXySzXxX
24 simpr WCModxXySzXzX
25 1 2 12 5 3 lmodvsdi WLModySxXzXy·˙x+˙z=y·˙x+˙y·˙z
26 21 22 23 24 25 syl13anc WCModxXySzXy·˙x+˙z=y·˙x+˙y·˙z
27 26 ralrimiva WCModxXySzXy·˙x+˙z=y·˙x+˙y·˙z
28 12 clmadd WCMod+=+ScalarW
29 28 ad2antrr WCModxXyS+=+ScalarW
30 29 oveqdr WCModxXySzSy+z=y+ScalarWz
31 30 oveq1d WCModxXySzSy+z·˙x=y+ScalarWz·˙x
32 20 ad2antrr WCModxXySzSWLMod
33 simplr WCModxXySzSyS
34 simpr WCModxXySzSzS
35 simpllr WCModxXySzSxX
36 eqid +ScalarW=+ScalarW
37 1 2 12 5 3 36 lmodvsdir WLModySzSxXy+ScalarWz·˙x=y·˙x+˙z·˙x
38 32 33 34 35 37 syl13anc WCModxXySzSy+ScalarWz·˙x=y·˙x+˙z·˙x
39 31 38 eqtrd WCModxXySzSy+z·˙x=y·˙x+˙z·˙x
40 12 clmmul WCMod×=ScalarW
41 40 ad2antrr WCModxXyS×=ScalarW
42 41 oveqdr WCModxXySzSyz=yScalarWz
43 42 oveq1d WCModxXySzSyz·˙x=yScalarWz·˙x
44 eqid ScalarW=ScalarW
45 1 12 5 3 44 lmodvsass WLModySzSxXyScalarWz·˙x=y·˙z·˙x
46 32 33 34 35 45 syl13anc WCModxXySzSyScalarWz·˙x=y·˙z·˙x
47 43 46 eqtrd WCModxXySzSyz·˙x=y·˙z·˙x
48 39 47 jca WCModxXySzSy+z·˙x=y·˙x+˙z·˙xyz·˙x=y·˙z·˙x
49 48 ralrimiva WCModxXySzSy+z·˙x=y·˙x+˙z·˙xyz·˙x=y·˙z·˙x
50 27 49 jca WCModxXySzXy·˙x+˙z=y·˙x+˙y·˙zzSy+z·˙x=y·˙x+˙z·˙xyz·˙x=y·˙z·˙x
51 50 ralrimiva WCModxXySzXy·˙x+˙z=y·˙x+˙y·˙zzSy+z·˙x=y·˙x+˙z·˙xyz·˙x=y·˙z·˙x
52 19 51 jca WCModxX1·˙x=xySzXy·˙x+˙z=y·˙x+˙y·˙zzSy+z·˙x=y·˙x+˙z·˙xyz·˙x=y·˙z·˙x
53 52 ralrimiva WCModxX1·˙x=xySzXy·˙x+˙z=y·˙x+˙y·˙zzSy+z·˙x=y·˙x+˙z·˙xyz·˙x=y·˙z·˙x
54 53 adantr WCModWLVecxX1·˙x=xySzXy·˙x+˙z=y·˙x+˙y·˙zzSy+z·˙x=y·˙x+˙z·˙xyz·˙x=y·˙z·˙x
55 11 18 54 3jca WCModWLVecWAbelS˙:S×XXxX1·˙x=xySzXy·˙x+˙z=y·˙x+˙y·˙zzSy+z·˙x=y·˙x+˙z·˙xyz·˙x=y·˙z·˙x
56 7 55 sylbi WℂVecWAbelS˙:S×XXxX1·˙x=xySzXy·˙x+˙z=y·˙x+˙y·˙zzSy+z·˙x=y·˙x+˙z·˙xyz·˙x=y·˙z·˙x