Metamath Proof Explorer


Theorem iserge0

Description: The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 3-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z=M
iserge0.2 φM
iserge0.3 φseqM+FA
iserge0.4 φkZFk
iserge0.5 φkZ0Fk
Assertion iserge0 φ0A

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z=M
2 iserge0.2 φM
3 iserge0.3 φseqM+FA
4 iserge0.4 φkZFk
5 iserge0.5 φkZ0Fk
6 serclim0 MseqM+M×00
7 2 6 syl φseqM+M×00
8 simpr φkZkZ
9 8 1 eleqtrdi φkZkM
10 c0ex 0V
11 10 fvconst2 kMM×0k=0
12 9 11 syl φkZM×0k=0
13 0re 0
14 12 13 eqeltrdi φkZM×0k
15 12 5 eqbrtrd φkZM×0kFk
16 1 2 7 3 14 4 15 iserle φ0A