Metamath Proof Explorer


Theorem isfin4p1

Description: Alternate definition of IV-finite sets: they are strictly dominated by their successors. (Thus, the proper subset referred to in isfin4 can be assumed to be only a singleton smaller than the original.) (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion isfin4p1 AFinIVAA⊔︀1𝑜

Proof

Step Hyp Ref Expression
1 1on 1𝑜On
2 djudoml AFinIV1𝑜OnAA⊔︀1𝑜
3 1 2 mpan2 AFinIVAA⊔︀1𝑜
4 1oex 1𝑜V
5 4 snid 1𝑜1𝑜
6 0lt1o 1𝑜
7 opelxpi 1𝑜1𝑜1𝑜1𝑜1𝑜×1𝑜
8 5 6 7 mp2an 1𝑜1𝑜×1𝑜
9 elun2 1𝑜1𝑜×1𝑜1𝑜×A1𝑜×1𝑜
10 8 9 ax-mp 1𝑜×A1𝑜×1𝑜
11 df-dju A⊔︀1𝑜=×A1𝑜×1𝑜
12 10 11 eleqtrri 1𝑜A⊔︀1𝑜
13 1n0 1𝑜
14 opelxp1 1𝑜×A1𝑜
15 elsni 1𝑜1𝑜=
16 14 15 syl 1𝑜×A1𝑜=
17 16 necon3ai 1𝑜¬1𝑜×A
18 13 17 ax-mp ¬1𝑜×A
19 ssun1 ×A×A1𝑜×1𝑜
20 19 11 sseqtrri ×AA⊔︀1𝑜
21 ssnelpss ×AA⊔︀1𝑜1𝑜A⊔︀1𝑜¬1𝑜×A×AA⊔︀1𝑜
22 20 21 ax-mp 1𝑜A⊔︀1𝑜¬1𝑜×A×AA⊔︀1𝑜
23 12 18 22 mp2an ×AA⊔︀1𝑜
24 0ex V
25 relen Rel
26 25 brrelex1i AA⊔︀1𝑜AV
27 xpsnen2g VAV×AA
28 24 26 27 sylancr AA⊔︀1𝑜×AA
29 entr ×AAAA⊔︀1𝑜×AA⊔︀1𝑜
30 28 29 mpancom AA⊔︀1𝑜×AA⊔︀1𝑜
31 fin4i ×AA⊔︀1𝑜×AA⊔︀1𝑜¬A⊔︀1𝑜FinIV
32 23 30 31 sylancr AA⊔︀1𝑜¬A⊔︀1𝑜FinIV
33 fin4en1 AA⊔︀1𝑜AFinIVA⊔︀1𝑜FinIV
34 32 33 mtod AA⊔︀1𝑜¬AFinIV
35 34 con2i AFinIV¬AA⊔︀1𝑜
36 brsdom AA⊔︀1𝑜AA⊔︀1𝑜¬AA⊔︀1𝑜
37 3 35 36 sylanbrc AFinIVAA⊔︀1𝑜
38 sdomnen AA⊔︀1𝑜¬AA⊔︀1𝑜
39 infdju1 ωAA⊔︀1𝑜A
40 39 ensymd ωAAA⊔︀1𝑜
41 38 40 nsyl AA⊔︀1𝑜¬ωA
42 relsdom Rel
43 42 brrelex1i AA⊔︀1𝑜AV
44 isfin4-2 AVAFinIV¬ωA
45 43 44 syl AA⊔︀1𝑜AFinIV¬ωA
46 41 45 mpbird AA⊔︀1𝑜AFinIV
47 37 46 impbii AFinIVAA⊔︀1𝑜