Metamath Proof Explorer


Theorem isfin4p1

Description: Alternate definition of IV-finite sets: they are strictly dominated by their successors. (Thus, the proper subset referred to in isfin4 can be assumed to be only a singleton smaller than the original.) (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion isfin4p1 A FinIV A A ⊔︀ 1 𝑜

Proof

Step Hyp Ref Expression
1 1on 1 𝑜 On
2 djudoml A FinIV 1 𝑜 On A A ⊔︀ 1 𝑜
3 1 2 mpan2 A FinIV A A ⊔︀ 1 𝑜
4 1oex 1 𝑜 V
5 4 snid 1 𝑜 1 𝑜
6 0lt1o 1 𝑜
7 opelxpi 1 𝑜 1 𝑜 1 𝑜 1 𝑜 1 𝑜 × 1 𝑜
8 5 6 7 mp2an 1 𝑜 1 𝑜 × 1 𝑜
9 elun2 1 𝑜 1 𝑜 × 1 𝑜 1 𝑜 × A 1 𝑜 × 1 𝑜
10 8 9 ax-mp 1 𝑜 × A 1 𝑜 × 1 𝑜
11 df-dju A ⊔︀ 1 𝑜 = × A 1 𝑜 × 1 𝑜
12 10 11 eleqtrri 1 𝑜 A ⊔︀ 1 𝑜
13 1n0 1 𝑜
14 opelxp1 1 𝑜 × A 1 𝑜
15 elsni 1 𝑜 1 𝑜 =
16 14 15 syl 1 𝑜 × A 1 𝑜 =
17 16 necon3ai 1 𝑜 ¬ 1 𝑜 × A
18 13 17 ax-mp ¬ 1 𝑜 × A
19 ssun1 × A × A 1 𝑜 × 1 𝑜
20 19 11 sseqtrri × A A ⊔︀ 1 𝑜
21 ssnelpss × A A ⊔︀ 1 𝑜 1 𝑜 A ⊔︀ 1 𝑜 ¬ 1 𝑜 × A × A A ⊔︀ 1 𝑜
22 20 21 ax-mp 1 𝑜 A ⊔︀ 1 𝑜 ¬ 1 𝑜 × A × A A ⊔︀ 1 𝑜
23 12 18 22 mp2an × A A ⊔︀ 1 𝑜
24 0ex V
25 relen Rel
26 25 brrelex1i A A ⊔︀ 1 𝑜 A V
27 xpsnen2g V A V × A A
28 24 26 27 sylancr A A ⊔︀ 1 𝑜 × A A
29 entr × A A A A ⊔︀ 1 𝑜 × A A ⊔︀ 1 𝑜
30 28 29 mpancom A A ⊔︀ 1 𝑜 × A A ⊔︀ 1 𝑜
31 fin4i × A A ⊔︀ 1 𝑜 × A A ⊔︀ 1 𝑜 ¬ A ⊔︀ 1 𝑜 FinIV
32 23 30 31 sylancr A A ⊔︀ 1 𝑜 ¬ A ⊔︀ 1 𝑜 FinIV
33 fin4en1 A A ⊔︀ 1 𝑜 A FinIV A ⊔︀ 1 𝑜 FinIV
34 32 33 mtod A A ⊔︀ 1 𝑜 ¬ A FinIV
35 34 con2i A FinIV ¬ A A ⊔︀ 1 𝑜
36 brsdom A A ⊔︀ 1 𝑜 A A ⊔︀ 1 𝑜 ¬ A A ⊔︀ 1 𝑜
37 3 35 36 sylanbrc A FinIV A A ⊔︀ 1 𝑜
38 sdomnen A A ⊔︀ 1 𝑜 ¬ A A ⊔︀ 1 𝑜
39 infdju1 ω A A ⊔︀ 1 𝑜 A
40 39 ensymd ω A A A ⊔︀ 1 𝑜
41 38 40 nsyl A A ⊔︀ 1 𝑜 ¬ ω A
42 relsdom Rel
43 42 brrelex1i A A ⊔︀ 1 𝑜 A V
44 isfin4-2 A V A FinIV ¬ ω A
45 43 44 syl A A ⊔︀ 1 𝑜 A FinIV ¬ ω A
46 41 45 mpbird A A ⊔︀ 1 𝑜 A FinIV
47 37 46 impbii A FinIV A A ⊔︀ 1 𝑜