Metamath Proof Explorer


Theorem isfin5

Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin5 AFinVA=AA⊔︀A

Proof

Step Hyp Ref Expression
1 df-fin5 FinV=x|x=xx⊔︀x
2 1 eleq2i AFinVAx|x=xx⊔︀x
3 id A=A=
4 0ex V
5 3 4 eqeltrdi A=AV
6 relsdom Rel
7 6 brrelex1i AA⊔︀AAV
8 5 7 jaoi A=AA⊔︀AAV
9 eqeq1 x=Ax=A=
10 id x=Ax=A
11 djueq12 x=Ax=Ax⊔︀x=A⊔︀A
12 11 anidms x=Ax⊔︀x=A⊔︀A
13 10 12 breq12d x=Axx⊔︀xAA⊔︀A
14 9 13 orbi12d x=Ax=xx⊔︀xA=AA⊔︀A
15 8 14 elab3 Ax|x=xx⊔︀xA=AA⊔︀A
16 2 15 bitri AFinVA=AA⊔︀A