Metamath Proof Explorer


Theorem isgrpd

Description: Deduce a group from its properties. Unlike isgrpd2 , this one goes straight from the base properties rather than going through Mnd . N (negative) is normally dependent on x i.e. read it as N ( x ) . (Contributed by NM, 6-Jun-2013) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses isgrpd.b φB=BaseG
isgrpd.p φ+˙=+G
isgrpd.c φxByBx+˙yB
isgrpd.a φxByBzBx+˙y+˙z=x+˙y+˙z
isgrpd.z φ0˙B
isgrpd.i φxB0˙+˙x=x
isgrpd.n φxBNB
isgrpd.j φxBN+˙x=0˙
Assertion isgrpd φGGrp

Proof

Step Hyp Ref Expression
1 isgrpd.b φB=BaseG
2 isgrpd.p φ+˙=+G
3 isgrpd.c φxByBx+˙yB
4 isgrpd.a φxByBzBx+˙y+˙z=x+˙y+˙z
5 isgrpd.z φ0˙B
6 isgrpd.i φxB0˙+˙x=x
7 isgrpd.n φxBNB
8 isgrpd.j φxBN+˙x=0˙
9 oveq1 y=Ny+˙x=N+˙x
10 9 eqeq1d y=Ny+˙x=0˙N+˙x=0˙
11 10 rspcev NBN+˙x=0˙yBy+˙x=0˙
12 7 8 11 syl2anc φxByBy+˙x=0˙
13 1 2 3 4 5 6 12 isgrpde φGGrp