Metamath Proof Explorer


Theorem ishaus2

Description: Express the predicate " J is a Hausdorff space." (Contributed by NM, 8-Mar-2007)

Ref Expression
Assertion ishaus2 JTopOnXJHausxXyXxynJmJxnymnm=

Proof

Step Hyp Ref Expression
1 topontop JTopOnXJTop
2 eqid J=J
3 2 ishaus JHausJTopxJyJxynJmJxnymnm=
4 3 baib JTopJHausxJyJxynJmJxnymnm=
5 1 4 syl JTopOnXJHausxJyJxynJmJxnymnm=
6 toponuni JTopOnXX=J
7 6 raleqdv JTopOnXyXxynJmJxnymnm=yJxynJmJxnymnm=
8 6 7 raleqbidv JTopOnXxXyXxynJmJxnymnm=xJyJxynJmJxnymnm=
9 5 8 bitr4d JTopOnXJHausxXyXxynJmJxnymnm=