Metamath Proof Explorer


Theorem ishlat2

Description: The predicate "is a Hilbert lattice". Here we replace K e. CvLat with the weaker K e. AtLat and show the exchange property explicitly. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses ishlat.b B=BaseK
ishlat.l ˙=K
ishlat.s <˙=<K
ishlat.j ˙=joinK
ishlat.z 0˙=0.K
ishlat.u 1˙=1.K
ishlat.a A=AtomsK
Assertion ishlat2 KHLKOMLKCLatKAtLatxAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xxByBzB0˙<˙xx<˙yy<˙zz<˙1˙

Proof

Step Hyp Ref Expression
1 ishlat.b B=BaseK
2 ishlat.l ˙=K
3 ishlat.s <˙=<K
4 ishlat.j ˙=joinK
5 ishlat.z 0˙=0.K
6 ishlat.u 1˙=1.K
7 ishlat.a A=AtomsK
8 1 2 3 4 5 6 7 ishlat1 KHLKOMLKCLatKCvLatxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
9 1 2 4 7 iscvlat KCvLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙x
10 9 3anbi3i KOMLKCLatKCvLatKOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙x
11 anass KOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙xKOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙x
12 df-3an KOMLKCLatKAtLatKOMLKCLatKAtLat
13 12 anbi1i KOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙xKOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙x
14 df-3an KOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙xKOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙x
15 11 13 14 3bitr4ri KOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙xKOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙x
16 10 15 bitri KOMLKCLatKCvLatKOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙x
17 16 anbi1i KOMLKCLatKCvLatxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙KOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙xxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
18 anass KOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙xxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙KOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙xxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
19 anass xAyAzB¬x˙zx˙z˙yy˙z˙xxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙xAyAzB¬x˙zx˙z˙yy˙z˙xxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
20 ancom xAyAzB¬x˙zx˙z˙yy˙z˙xxAyAxyzAzxzyz˙x˙yxAyAxyzAzxzyz˙x˙yxAyAzB¬x˙zx˙z˙yy˙z˙x
21 r19.26-2 xAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xxAyAxyzAzxzyz˙x˙yxAyAzB¬x˙zx˙z˙yy˙z˙x
22 20 21 bitr4i xAyAzB¬x˙zx˙z˙yy˙z˙xxAyAxyzAzxzyz˙x˙yxAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙x
23 22 anbi1i xAyAzB¬x˙zx˙z˙yy˙z˙xxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙xAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
24 19 23 bitr3i xAyAzB¬x˙zx˙z˙yy˙z˙xxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙xAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
25 24 anbi2i KOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙xxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙KOMLKCLatKAtLatxAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
26 18 25 bitri KOMLKCLatKAtLatxAyAzB¬x˙zx˙z˙yy˙z˙xxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙KOMLKCLatKAtLatxAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
27 8 17 26 3bitri KHLKOMLKCLatKAtLatxAyAxyzAzxzyz˙x˙yzB¬x˙zx˙z˙yy˙z˙xxByBzB0˙<˙xx<˙yy<˙zz<˙1˙