Metamath Proof Explorer


Theorem isldsys

Description: The property of being a lambda-system or Dynkin system. Lambda-systems contain the empty set, are closed under complement, and closed under countable disjoint union. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypothesis isldsys.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
Assertion isldsys S L S 𝒫 𝒫 O S x S O x S x 𝒫 S x ω Disj y x y x S

Proof

Step Hyp Ref Expression
1 isldsys.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
2 eleq2 s = S s S
3 eleq2 s = S O x s O x S
4 3 raleqbi1dv s = S x s O x s x S O x S
5 pweq s = S 𝒫 s = 𝒫 S
6 eleq2 s = S x s x S
7 6 imbi2d s = S x ω Disj y x y x s x ω Disj y x y x S
8 5 7 raleqbidv s = S x 𝒫 s x ω Disj y x y x s x 𝒫 S x ω Disj y x y x S
9 2 4 8 3anbi123d s = S s x s O x s x 𝒫 s x ω Disj y x y x s S x S O x S x 𝒫 S x ω Disj y x y x S
10 9 1 elrab2 S L S 𝒫 𝒫 O S x S O x S x 𝒫 S x ω Disj y x y x S