Metamath Proof Explorer


Theorem islfl

Description: The predicate "is a linear functional". (Contributed by NM, 15-Apr-2014)

Ref Expression
Hypotheses lflset.v V=BaseW
lflset.a +˙=+W
lflset.d D=ScalarW
lflset.s ·˙=W
lflset.k K=BaseD
lflset.p ˙=+D
lflset.t ×˙=D
lflset.f F=LFnlW
Assertion islfl WXGFG:VKrKxVyVGr·˙x+˙y=r×˙Gx˙Gy

Proof

Step Hyp Ref Expression
1 lflset.v V=BaseW
2 lflset.a +˙=+W
3 lflset.d D=ScalarW
4 lflset.s ·˙=W
5 lflset.k K=BaseD
6 lflset.p ˙=+D
7 lflset.t ×˙=D
8 lflset.f F=LFnlW
9 1 2 3 4 5 6 7 8 lflset WXF=fKV|rKxVyVfr·˙x+˙y=r×˙fx˙fy
10 9 eleq2d WXGFGfKV|rKxVyVfr·˙x+˙y=r×˙fx˙fy
11 fveq1 f=Gfr·˙x+˙y=Gr·˙x+˙y
12 fveq1 f=Gfx=Gx
13 12 oveq2d f=Gr×˙fx=r×˙Gx
14 fveq1 f=Gfy=Gy
15 13 14 oveq12d f=Gr×˙fx˙fy=r×˙Gx˙Gy
16 11 15 eqeq12d f=Gfr·˙x+˙y=r×˙fx˙fyGr·˙x+˙y=r×˙Gx˙Gy
17 16 2ralbidv f=GxVyVfr·˙x+˙y=r×˙fx˙fyxVyVGr·˙x+˙y=r×˙Gx˙Gy
18 17 ralbidv f=GrKxVyVfr·˙x+˙y=r×˙fx˙fyrKxVyVGr·˙x+˙y=r×˙Gx˙Gy
19 18 elrab GfKV|rKxVyVfr·˙x+˙y=r×˙fx˙fyGKVrKxVyVGr·˙x+˙y=r×˙Gx˙Gy
20 5 fvexi KV
21 1 fvexi VV
22 20 21 elmap GKVG:VK
23 22 anbi1i GKVrKxVyVGr·˙x+˙y=r×˙Gx˙GyG:VKrKxVyVGr·˙x+˙y=r×˙Gx˙Gy
24 19 23 bitri GfKV|rKxVyVfr·˙x+˙y=r×˙fx˙fyG:VKrKxVyVGr·˙x+˙y=r×˙Gx˙Gy
25 10 24 bitrdi WXGFG:VKrKxVyVGr·˙x+˙y=r×˙Gx˙Gy