Metamath Proof Explorer


Theorem islln2a

Description: The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012)

Ref Expression
Hypotheses islln2a.j ˙=joinK
islln2a.a A=AtomsK
islln2a.n N=LLinesK
Assertion islln2a KHLPAQAP˙QNPQ

Proof

Step Hyp Ref Expression
1 islln2a.j ˙=joinK
2 islln2a.a A=AtomsK
3 islln2a.n N=LLinesK
4 oveq1 P=QP˙Q=Q˙Q
5 1 2 hlatjidm KHLQAQ˙Q=Q
6 5 3adant2 KHLPAQAQ˙Q=Q
7 4 6 sylan9eqr KHLPAQAP=QP˙Q=Q
8 2 3 llnneat KHLQN¬QA
9 8 adantlr KHLPAQN¬QA
10 9 ex KHLPAQN¬QA
11 10 con2d KHLPAQA¬QN
12 11 3impia KHLPAQA¬QN
13 12 adantr KHLPAQAP=Q¬QN
14 7 13 eqneltrd KHLPAQAP=Q¬P˙QN
15 14 ex KHLPAQAP=Q¬P˙QN
16 15 necon2ad KHLPAQAP˙QNPQ
17 1 2 3 llni2 KHLPAQAPQP˙QN
18 17 ex KHLPAQAPQP˙QN
19 16 18 impbid KHLPAQAP˙QNPQ