Metamath Proof Explorer


Theorem islpi

Description: A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007)

Ref Expression
Hypothesis lpfval.1 X = J
Assertion islpi J Top S X P cls J S ¬ P S P limPt J S

Proof

Step Hyp Ref Expression
1 lpfval.1 X = J
2 1 clslp J Top S X cls J S = S limPt J S
3 2 eleq2d J Top S X P cls J S P S limPt J S
4 elun P S limPt J S P S P limPt J S
5 df-or P S P limPt J S ¬ P S P limPt J S
6 4 5 bitri P S limPt J S ¬ P S P limPt J S
7 3 6 bitrdi J Top S X P cls J S ¬ P S P limPt J S
8 7 biimpd J Top S X P cls J S ¬ P S P limPt J S
9 8 imp32 J Top S X P cls J S ¬ P S P limPt J S