Metamath Proof Explorer


Theorem islpi

Description: A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007)

Ref Expression
Hypothesis lpfval.1 X=J
Assertion islpi JTopSXPclsJS¬PSPlimPtJS

Proof

Step Hyp Ref Expression
1 lpfval.1 X=J
2 1 clslp JTopSXclsJS=SlimPtJS
3 2 eleq2d JTopSXPclsJSPSlimPtJS
4 elun PSlimPtJSPSPlimPtJS
5 df-or PSPlimPtJS¬PSPlimPtJS
6 4 5 bitri PSlimPtJS¬PSPlimPtJS
7 3 6 bitrdi JTopSXPclsJS¬PSPlimPtJS
8 7 biimpd JTopSXPclsJS¬PSPlimPtJS
9 8 imp32 JTopSXPclsJS¬PSPlimPtJS