Description: The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lpfval.1 | |
|
Assertion | clslp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | |
|
2 | 1 | neindisj | |
3 | 2 | expr | |
4 | 3 | adantr | |
5 | difsn | |
|
6 | 5 | ineq2d | |
7 | 6 | neeq1d | |
8 | 7 | adantl | |
9 | 4 8 | sylibrd | |
10 | 9 | ex | |
11 | 10 | ralrimdv | |
12 | simpll | |
|
13 | simplr | |
|
14 | 1 | clsss3 | |
15 | 14 | sselda | |
16 | 1 | islp2 | |
17 | 12 13 15 16 | syl3anc | |
18 | 11 17 | sylibrd | |
19 | 18 | orrd | |
20 | elun | |
|
21 | 19 20 | sylibr | |
22 | 21 | ex | |
23 | 22 | ssrdv | |
24 | 1 | sscls | |
25 | 1 | lpsscls | |
26 | 24 25 | unssd | |
27 | 23 26 | eqssd | |