Metamath Proof Explorer


Theorem clslp

Description: The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis lpfval.1 X=J
Assertion clslp JTopSXclsJS=SlimPtJS

Proof

Step Hyp Ref Expression
1 lpfval.1 X=J
2 1 neindisj JTopSXxclsJSnneiJxnS
3 2 expr JTopSXxclsJSnneiJxnS
4 3 adantr JTopSXxclsJS¬xSnneiJxnS
5 difsn ¬xSSx=S
6 5 ineq2d ¬xSnSx=nS
7 6 neeq1d ¬xSnSxnS
8 7 adantl JTopSXxclsJS¬xSnSxnS
9 4 8 sylibrd JTopSXxclsJS¬xSnneiJxnSx
10 9 ex JTopSXxclsJS¬xSnneiJxnSx
11 10 ralrimdv JTopSXxclsJS¬xSnneiJxnSx
12 simpll JTopSXxclsJSJTop
13 simplr JTopSXxclsJSSX
14 1 clsss3 JTopSXclsJSX
15 14 sselda JTopSXxclsJSxX
16 1 islp2 JTopSXxXxlimPtJSnneiJxnSx
17 12 13 15 16 syl3anc JTopSXxclsJSxlimPtJSnneiJxnSx
18 11 17 sylibrd JTopSXxclsJS¬xSxlimPtJS
19 18 orrd JTopSXxclsJSxSxlimPtJS
20 elun xSlimPtJSxSxlimPtJS
21 19 20 sylibr JTopSXxclsJSxSlimPtJS
22 21 ex JTopSXxclsJSxSlimPtJS
23 22 ssrdv JTopSXclsJSSlimPtJS
24 1 sscls JTopSXSclsJS
25 1 lpsscls JTopSXlimPtJSclsJS
26 24 25 unssd JTopSXSlimPtJSclsJS
27 23 26 eqssd JTopSXclsJS=SlimPtJS