Metamath Proof Explorer


Theorem islpln3

Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012)

Ref Expression
Hypotheses islpln3.b B=BaseK
islpln3.l ˙=K
islpln3.j ˙=joinK
islpln3.a A=AtomsK
islpln3.n N=LLinesK
islpln3.p P=LPlanesK
Assertion islpln3 KHLXBXPyNpA¬p˙yX=y˙p

Proof

Step Hyp Ref Expression
1 islpln3.b B=BaseK
2 islpln3.l ˙=K
3 islpln3.j ˙=joinK
4 islpln3.a A=AtomsK
5 islpln3.n N=LLinesK
6 islpln3.p P=LPlanesK
7 eqid K=K
8 1 7 5 6 islpln4 KHLXBXPyNyKX
9 simpll KHLXByNKHL
10 1 5 llnbase yNyB
11 10 adantl KHLXByNyB
12 simplr KHLXByNXB
13 1 2 3 7 4 cvrval3 KHLyBXByKXpA¬p˙yy˙p=X
14 9 11 12 13 syl3anc KHLXByNyKXpA¬p˙yy˙p=X
15 eqcom y˙p=XX=y˙p
16 15 a1i KHLXByNpAy˙p=XX=y˙p
17 16 anbi2d KHLXByNpA¬p˙yy˙p=X¬p˙yX=y˙p
18 17 rexbidva KHLXByNpA¬p˙yy˙p=XpA¬p˙yX=y˙p
19 14 18 bitrd KHLXByNyKXpA¬p˙yX=y˙p
20 19 rexbidva KHLXByNyKXyNpA¬p˙yX=y˙p
21 8 20 bitrd KHLXBXPyNpA¬p˙yX=y˙p