Metamath Proof Explorer


Theorem islssfg

Description: Property of a finitely generated left (sub)module. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses islssfg.x X=W𝑠U
islssfg.s S=LSubSpW
islssfg.n N=LSpanW
Assertion islssfg WLModUSXLFinGenb𝒫UbFinNb=U

Proof

Step Hyp Ref Expression
1 islssfg.x X=W𝑠U
2 islssfg.s S=LSubSpW
3 islssfg.n N=LSpanW
4 eqid BaseW=BaseW
5 4 2 lssss USUBaseW
6 1 4 ressbas2 UBaseWU=BaseX
7 5 6 syl USU=BaseX
8 7 pweqd US𝒫U=𝒫BaseX
9 8 rexeqdv USb𝒫UbFinLSpanXb=BaseXb𝒫BaseXbFinLSpanXb=BaseX
10 9 adantl WLModUSb𝒫UbFinLSpanXb=BaseXb𝒫BaseXbFinLSpanXb=BaseX
11 elpwi b𝒫UbU
12 eqid LSpanX=LSpanX
13 1 3 12 2 lsslsp WLModUSbUNb=LSpanXb
14 13 3expa WLModUSbUNb=LSpanXb
15 11 14 sylan2 WLModUSb𝒫UNb=LSpanXb
16 7 ad2antlr WLModUSb𝒫UU=BaseX
17 15 16 eqeq12d WLModUSb𝒫UNb=ULSpanXb=BaseX
18 17 anbi2d WLModUSb𝒫UbFinNb=UbFinLSpanXb=BaseX
19 18 rexbidva WLModUSb𝒫UbFinNb=Ub𝒫UbFinLSpanXb=BaseX
20 1 2 lsslmod WLModUSXLMod
21 eqid BaseX=BaseX
22 21 12 islmodfg XLModXLFinGenb𝒫BaseXbFinLSpanXb=BaseX
23 20 22 syl WLModUSXLFinGenb𝒫BaseXbFinLSpanXb=BaseX
24 10 19 23 3bitr4rd WLModUSXLFinGenb𝒫UbFinNb=U