Metamath Proof Explorer


Theorem ismgmd

Description: Deduce a magma from its properties. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypotheses ismgmd.b φB=BaseG
ismgmd.0 φGV
ismgmd.p φ+˙=+G
ismgmd.c φxByBx+˙yB
Assertion ismgmd φGMgm

Proof

Step Hyp Ref Expression
1 ismgmd.b φB=BaseG
2 ismgmd.0 φGV
3 ismgmd.p φ+˙=+G
4 ismgmd.c φxByBx+˙yB
5 4 3expb φxByBx+˙yB
6 5 ralrimivva φxByBx+˙yB
7 3 oveqd φx+˙y=x+Gy
8 7 1 eleq12d φx+˙yBx+GyBaseG
9 1 8 raleqbidv φyBx+˙yByBaseGx+GyBaseG
10 1 9 raleqbidv φxByBx+˙yBxBaseGyBaseGx+GyBaseG
11 6 10 mpbid φxBaseGyBaseGx+GyBaseG
12 eqid BaseG=BaseG
13 eqid +G=+G
14 12 13 ismgm GVGMgmxBaseGyBaseGx+GyBaseG
15 2 14 syl φGMgmxBaseGyBaseGx+GyBaseG
16 11 15 mpbird φGMgm