Description: A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isnmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nmhm | |
|
2 | 1 | elmpocl | |
3 | oveq12 | |
|
4 | oveq12 | |
|
5 | 3 4 | ineq12d | |
6 | ovex | |
|
7 | 6 | inex1 | |
8 | 5 1 7 | ovmpoa | |
9 | 8 | eleq2d | |
10 | elin | |
|
11 | 9 10 | bitrdi | |
12 | 2 11 | biadanii | |