Metamath Proof Explorer


Theorem isnmhm

Description: A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Assertion isnmhm FSNMHomTSNrmModTNrmModFSLMHomTFSNGHomT

Proof

Step Hyp Ref Expression
1 df-nmhm NMHom=sNrmMod,tNrmModsLMHomtsNGHomt
2 1 elmpocl FSNMHomTSNrmModTNrmMod
3 oveq12 s=St=TsLMHomt=SLMHomT
4 oveq12 s=St=TsNGHomt=SNGHomT
5 3 4 ineq12d s=St=TsLMHomtsNGHomt=SLMHomTSNGHomT
6 ovex SLMHomTV
7 6 inex1 SLMHomTSNGHomTV
8 5 1 7 ovmpoa SNrmModTNrmModSNMHomT=SLMHomTSNGHomT
9 8 eleq2d SNrmModTNrmModFSNMHomTFSLMHomTSNGHomT
10 elin FSLMHomTSNGHomTFSLMHomTFSNGHomT
11 9 10 bitrdi SNrmModTNrmModFSNMHomTFSLMHomTFSNGHomT
12 2 11 biadanii FSNMHomTSNrmModTNrmModFSLMHomTFSNGHomT