Metamath Proof Explorer


Theorem isnumbasgrp

Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of a group. (Contributed by Stefan O'Rear, 9-Jul-2015)

Ref Expression
Assertion isnumbasgrp SdomcardSharSBaseGrp

Proof

Step Hyp Ref Expression
1 ablgrp xAbelxGrp
2 1 ssriv AbelGrp
3 imass2 AbelGrpBaseAbelBaseGrp
4 2 3 ax-mp BaseAbelBaseGrp
5 isnumbasabl SdomcardSharSBaseAbel
6 5 biimpi SdomcardSharSBaseAbel
7 4 6 sselid SdomcardSharSBaseGrp
8 isnumbasgrplem2 SharSBaseGrpSdomcard
9 7 8 impbii SdomcardSharSBaseGrp