Metamath Proof Explorer


Theorem isoeq4

Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)

Ref Expression
Assertion isoeq4 A=CHIsomR,SABHIsomR,SCB

Proof

Step Hyp Ref Expression
1 f1oeq2 A=CH:A1-1 ontoBH:C1-1 ontoB
2 raleq A=CyAxRyHxSHyyCxRyHxSHy
3 2 raleqbi1dv A=CxAyAxRyHxSHyxCyCxRyHxSHy
4 1 3 anbi12d A=CH:A1-1 ontoBxAyAxRyHxSHyH:C1-1 ontoBxCyCxRyHxSHy
5 df-isom HIsomR,SABH:A1-1 ontoBxAyAxRyHxSHy
6 df-isom HIsomR,SCBH:C1-1 ontoBxCyCxRyHxSHy
7 4 5 6 3bitr4g A=CHIsomR,SABHIsomR,SCB