Metamath Proof Explorer


Theorem isohom

Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses isohom.b B=BaseC
isohom.h H=HomC
isohom.i I=IsoC
isohom.c φCCat
isohom.x φXB
isohom.y φYB
Assertion isohom φXIYXHY

Proof

Step Hyp Ref Expression
1 isohom.b B=BaseC
2 isohom.h H=HomC
3 isohom.i I=IsoC
4 isohom.c φCCat
5 isohom.x φXB
6 isohom.y φYB
7 eqid InvC=InvC
8 1 7 4 5 6 3 isoval φXIY=domXInvCY
9 1 7 4 5 6 2 invss φXInvCYXHY×YHX
10 dmss XInvCYXHY×YHXdomXInvCYdomXHY×YHX
11 9 10 syl φdomXInvCYdomXHY×YHX
12 8 11 eqsstrd φXIYdomXHY×YHX
13 dmxpss domXHY×YHXXHY
14 12 13 sstrdi φXIYXHY