Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isohom.b | |
|
isohom.h | |
||
isohom.i | |
||
isohom.c | |
||
isohom.x | |
||
isohom.y | |
||
Assertion | isohom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isohom.b | |
|
2 | isohom.h | |
|
3 | isohom.i | |
|
4 | isohom.c | |
|
5 | isohom.x | |
|
6 | isohom.y | |
|
7 | eqid | |
|
8 | 1 7 4 5 6 3 | isoval | |
9 | 1 7 4 5 6 2 | invss | |
10 | dmss | |
|
11 | 9 10 | syl | |
12 | 8 11 | eqsstrd | |
13 | dmxpss | |
|
14 | 12 13 | sstrdi | |