Metamath Proof Explorer


Theorem isoval

Description: The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof shortened by AV, 21-May-2020)

Ref Expression
Hypotheses invfval.b B = Base C
invfval.n N = Inv C
invfval.c φ C Cat
invfval.x φ X B
invfval.y φ Y B
isoval.n I = Iso C
Assertion isoval φ X I Y = dom X N Y

Proof

Step Hyp Ref Expression
1 invfval.b B = Base C
2 invfval.n N = Inv C
3 invfval.c φ C Cat
4 invfval.x φ X B
5 invfval.y φ Y B
6 isoval.n I = Iso C
7 isofval C Cat Iso C = z V dom z Inv C
8 3 7 syl φ Iso C = z V dom z Inv C
9 2 coeq2i z V dom z N = z V dom z Inv C
10 8 6 9 3eqtr4g φ I = z V dom z N
11 10 oveqd φ X I Y = X z V dom z N Y
12 eqid x B , y B x Sect C y y Sect C x -1 = x B , y B x Sect C y y Sect C x -1
13 ovex x Sect C y V
14 13 inex1 x Sect C y y Sect C x -1 V
15 12 14 fnmpoi x B , y B x Sect C y y Sect C x -1 Fn B × B
16 eqid Sect C = Sect C
17 1 2 3 4 5 16 invffval φ N = x B , y B x Sect C y y Sect C x -1
18 17 fneq1d φ N Fn B × B x B , y B x Sect C y y Sect C x -1 Fn B × B
19 15 18 mpbiri φ N Fn B × B
20 4 5 opelxpd φ X Y B × B
21 fvco2 N Fn B × B X Y B × B z V dom z N X Y = z V dom z N X Y
22 19 20 21 syl2anc φ z V dom z N X Y = z V dom z N X Y
23 df-ov X z V dom z N Y = z V dom z N X Y
24 ovex X N Y V
25 dmeq z = X N Y dom z = dom X N Y
26 eqid z V dom z = z V dom z
27 24 dmex dom X N Y V
28 25 26 27 fvmpt X N Y V z V dom z X N Y = dom X N Y
29 24 28 ax-mp z V dom z X N Y = dom X N Y
30 df-ov X N Y = N X Y
31 30 fveq2i z V dom z X N Y = z V dom z N X Y
32 29 31 eqtr3i dom X N Y = z V dom z N X Y
33 22 23 32 3eqtr4g φ X z V dom z N Y = dom X N Y
34 11 33 eqtrd φ X I Y = dom X N Y