Metamath Proof Explorer


Theorem ispcmp

Description: The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion ispcmp JParacompJCovHasRefLocFinJ

Proof

Step Hyp Ref Expression
1 elex JParacompJV
2 elex JCovHasRefLocFinJJV
3 id j=Jj=J
4 fveq2 j=JLocFinj=LocFinJ
5 crefeq LocFinj=LocFinJCovHasRefLocFinj=CovHasRefLocFinJ
6 4 5 syl j=JCovHasRefLocFinj=CovHasRefLocFinJ
7 3 6 eleq12d j=JjCovHasRefLocFinjJCovHasRefLocFinJ
8 df-pcmp Paracomp=j|jCovHasRefLocFinj
9 7 8 elab2g JVJParacompJCovHasRefLocFinJ
10 1 2 9 pm5.21nii JParacompJCovHasRefLocFinJ