Metamath Proof Explorer


Theorem isperf

Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis lpfval.1 X=J
Assertion isperf JPerfJToplimPtJX=X

Proof

Step Hyp Ref Expression
1 lpfval.1 X=J
2 fveq2 j=JlimPtj=limPtJ
3 unieq j=Jj=J
4 3 1 eqtr4di j=Jj=X
5 2 4 fveq12d j=JlimPtjj=limPtJX
6 5 4 eqeq12d j=JlimPtjj=jlimPtJX=X
7 df-perf Perf=jTop|limPtjj=j
8 6 7 elrab2 JPerfJToplimPtJX=X