Metamath Proof Explorer


Theorem ispos2

Description: A poset is an antisymmetric proset.

EDITORIAL: could become the definition of poset. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses ispos2.b B=BaseK
ispos2.l ˙=K
Assertion ispos2 KPosetKProsetxByBx˙yy˙xx=y

Proof

Step Hyp Ref Expression
1 ispos2.b B=BaseK
2 ispos2.l ˙=K
3 3anan32 x˙xx˙yy˙xx=yx˙yy˙zx˙zx˙xx˙yy˙zx˙zx˙yy˙xx=y
4 3 ralbii zBx˙xx˙yy˙xx=yx˙yy˙zx˙zzBx˙xx˙yy˙zx˙zx˙yy˙xx=y
5 r19.26 zBx˙xx˙yy˙zx˙zx˙yy˙xx=yzBx˙xx˙yy˙zx˙zzBx˙yy˙xx=y
6 4 5 bitri zBx˙xx˙yy˙xx=yx˙yy˙zx˙zzBx˙xx˙yy˙zx˙zzBx˙yy˙xx=y
7 6 2ralbii xByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙zxByBzBx˙xx˙yy˙zx˙zzBx˙yy˙xx=y
8 r19.26-2 xByBzBx˙xx˙yy˙zx˙zzBx˙yy˙xx=yxByBzBx˙xx˙yy˙zx˙zxByBzBx˙yy˙xx=y
9 rr19.3v yBzBx˙yy˙xx=yyBx˙yy˙xx=y
10 9 ralbii xByBzBx˙yy˙xx=yxByBx˙yy˙xx=y
11 10 anbi2i xByBzBx˙xx˙yy˙zx˙zxByBzBx˙yy˙xx=yxByBzBx˙xx˙yy˙zx˙zxByBx˙yy˙xx=y
12 8 11 bitri xByBzBx˙xx˙yy˙zx˙zzBx˙yy˙xx=yxByBzBx˙xx˙yy˙zx˙zxByBx˙yy˙xx=y
13 7 12 bitri xByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙zxByBzBx˙xx˙yy˙zx˙zxByBx˙yy˙xx=y
14 13 anbi2i KVxByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙zKVxByBzBx˙xx˙yy˙zx˙zxByBx˙yy˙xx=y
15 1 2 ispos KPosetKVxByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙z
16 1 2 isprs KProsetKVxByBzBx˙xx˙yy˙zx˙z
17 16 anbi1i KProsetxByBx˙yy˙xx=yKVxByBzBx˙xx˙yy˙zx˙zxByBx˙yy˙xx=y
18 anass KVxByBzBx˙xx˙yy˙zx˙zxByBx˙yy˙xx=yKVxByBzBx˙xx˙yy˙zx˙zxByBx˙yy˙xx=y
19 17 18 bitri KProsetxByBx˙yy˙xx=yKVxByBzBx˙xx˙yy˙zx˙zxByBx˙yy˙xx=y
20 14 15 19 3bitr4i KPosetKProsetxByBx˙yy˙xx=y