Metamath Proof Explorer


Theorem ispsubclN

Description: The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses psubclset.a A=AtomsK
psubclset.p ˙=𝑃K
psubclset.c C=PSubClK
Assertion ispsubclN KDXCXA˙˙X=X

Proof

Step Hyp Ref Expression
1 psubclset.a A=AtomsK
2 psubclset.p ˙=𝑃K
3 psubclset.c C=PSubClK
4 1 2 3 psubclsetN KDC=x|xA˙˙x=x
5 4 eleq2d KDXCXx|xA˙˙x=x
6 1 fvexi AV
7 6 ssex XAXV
8 7 adantr XA˙˙X=XXV
9 sseq1 x=XxAXA
10 2fveq3 x=X˙˙x=˙˙X
11 id x=Xx=X
12 10 11 eqeq12d x=X˙˙x=x˙˙X=X
13 9 12 anbi12d x=XxA˙˙x=xXA˙˙X=X
14 8 13 elab3 Xx|xA˙˙x=xXA˙˙X=X
15 5 14 bitrdi KDXCXA˙˙X=X