Database
BASIC ALGEBRAIC STRUCTURES
Groups
Simple groups
Definition and basic properties
issimpg
Next ⟩
issimpgd
Metamath Proof Explorer
Ascii
Unicode
Theorem
issimpg
Description:
The predicate "is a simple group".
(Contributed by
Rohan Ridenour
, 3-Aug-2023)
Ref
Expression
Assertion
issimpg
⊢
G
∈
SimpGrp
↔
G
∈
Grp
∧
NrmSGrp
⁡
G
≈
2
𝑜
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
g
=
G
→
NrmSGrp
⁡
g
=
NrmSGrp
⁡
G
2
1
breq1d
⊢
g
=
G
→
NrmSGrp
⁡
g
≈
2
𝑜
↔
NrmSGrp
⁡
G
≈
2
𝑜
3
df-simpg
⊢
SimpGrp
=
g
∈
Grp
|
NrmSGrp
⁡
g
≈
2
𝑜
4
2
3
elrab2
⊢
G
∈
SimpGrp
↔
G
∈
Grp
∧
NrmSGrp
⁡
G
≈
2
𝑜