Metamath Proof Explorer


Theorem issimpg

Description: The predicate "is a simple group". (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Assertion issimpg G SimpGrp G Grp NrmSGrp G 2 𝑜

Proof

Step Hyp Ref Expression
1 fveq2 g = G NrmSGrp g = NrmSGrp G
2 1 breq1d g = G NrmSGrp g 2 𝑜 NrmSGrp G 2 𝑜
3 df-simpg SimpGrp = g Grp | NrmSGrp g 2 𝑜
4 2 3 elrab2 G SimpGrp G Grp NrmSGrp G 2 𝑜