Metamath Proof Explorer


Theorem issmo2

Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013)

Ref Expression
Assertion issmo2 F:ABBOnOrdAxAyxFyFxSmoF

Proof

Step Hyp Ref Expression
1 fss F:ABBOnF:AOn
2 1 ex F:ABBOnF:AOn
3 fdm F:ABdomF=A
4 3 feq2d F:ABF:domFOnF:AOn
5 2 4 sylibrd F:ABBOnF:domFOn
6 ordeq domF=AOrddomFOrdA
7 3 6 syl F:ABOrddomFOrdA
8 7 biimprd F:ABOrdAOrddomF
9 3 raleqdv F:ABxdomFyxFyFxxAyxFyFx
10 9 biimprd F:ABxAyxFyFxxdomFyxFyFx
11 5 8 10 3anim123d F:ABBOnOrdAxAyxFyFxF:domFOnOrddomFxdomFyxFyFx
12 dfsmo2 SmoFF:domFOnOrddomFxdomFyxFyFx
13 11 12 syl6ibr F:ABBOnOrdAxAyxFyFxSmoF