Metamath Proof Explorer


Theorem issrgid

Description: Properties showing that an element I is the unity element of a semiring. (Contributed by NM, 7-Aug-2013) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgidm.b B=BaseR
srgidm.t ·˙=R
srgidm.u 1˙=1R
Assertion issrgid RSRingIBxBI·˙x=xx·˙I=x1˙=I

Proof

Step Hyp Ref Expression
1 srgidm.b B=BaseR
2 srgidm.t ·˙=R
3 srgidm.u 1˙=1R
4 eqid mulGrpR=mulGrpR
5 4 1 mgpbas B=BasemulGrpR
6 4 3 ringidval 1˙=0mulGrpR
7 4 2 mgpplusg ·˙=+mulGrpR
8 1 2 srgideu RSRing∃!yBxBy·˙x=xx·˙y=x
9 reurex ∃!yBxBy·˙x=xx·˙y=xyBxBy·˙x=xx·˙y=x
10 8 9 syl RSRingyBxBy·˙x=xx·˙y=x
11 5 6 7 10 ismgmid RSRingIBxBI·˙x=xx·˙I=x1˙=I