Metamath Proof Explorer


Theorem istdrg

Description: Express the predicate " R is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses istrg.1 M=mulGrpR
istdrg.1 U=UnitR
Assertion istdrg RTopDRingRTopRingRDivRingM𝑠UTopGrp

Proof

Step Hyp Ref Expression
1 istrg.1 M=mulGrpR
2 istdrg.1 U=UnitR
3 elin RTopRingDivRingRTopRingRDivRing
4 3 anbi1i RTopRingDivRingM𝑠UTopGrpRTopRingRDivRingM𝑠UTopGrp
5 fveq2 r=RmulGrpr=mulGrpR
6 5 1 eqtr4di r=RmulGrpr=M
7 fveq2 r=RUnitr=UnitR
8 7 2 eqtr4di r=RUnitr=U
9 6 8 oveq12d r=RmulGrpr𝑠Unitr=M𝑠U
10 9 eleq1d r=RmulGrpr𝑠UnitrTopGrpM𝑠UTopGrp
11 df-tdrg TopDRing=rTopRingDivRing|mulGrpr𝑠UnitrTopGrp
12 10 11 elrab2 RTopDRingRTopRingDivRingM𝑠UTopGrp
13 df-3an RTopRingRDivRingM𝑠UTopGrpRTopRingRDivRingM𝑠UTopGrp
14 4 12 13 3bitr4i RTopDRingRTopRingRDivRingM𝑠UTopGrp