Metamath Proof Explorer


Theorem istermo

Description: The predicate "is a terminal object" of a category. (Contributed by AV, 3-Apr-2020)

Ref Expression
Hypotheses isinito.b B=BaseC
isinito.h H=HomC
isinito.c φCCat
isinito.i φIB
Assertion istermo φITermOCbB∃!hhbHI

Proof

Step Hyp Ref Expression
1 isinito.b B=BaseC
2 isinito.h H=HomC
3 isinito.c φCCat
4 isinito.i φIB
5 3 1 2 termoval φTermOC=iB|bB∃!hhbHi
6 5 eleq2d φITermOCIiB|bB∃!hhbHi
7 oveq2 i=IbHi=bHI
8 7 eleq2d i=IhbHihbHI
9 8 eubidv i=I∃!hhbHi∃!hhbHI
10 9 ralbidv i=IbB∃!hhbHibB∃!hhbHI
11 10 elrab3 IBIiB|bB∃!hhbHibB∃!hhbHI
12 4 11 syl φIiB|bB∃!hhbHibB∃!hhbHI
13 6 12 bitrd φITermOCbB∃!hhbHI