Database
BASIC CATEGORY THEORY
Categories
Initial, terminal and zero objects of a category
istermoi
Next ⟩
initoid
Metamath Proof Explorer
Ascii
Unicode
Theorem
istermoi
Description:
Implication of a class being a terminal object.
(Contributed by
AV
, 18-Apr-2020)
Ref
Expression
Hypotheses
isinitoi.b
⊢
B
=
Base
C
isinitoi.h
⊢
H
=
Hom
⁡
C
isinitoi.c
⊢
φ
→
C
∈
Cat
Assertion
istermoi
⊢
φ
∧
O
∈
TermO
⁡
C
→
O
∈
B
∧
∀
b
∈
B
∃!
h
h
∈
b
H
O
Proof
Step
Hyp
Ref
Expression
1
isinitoi.b
⊢
B
=
Base
C
2
isinitoi.h
⊢
H
=
Hom
⁡
C
3
isinitoi.c
⊢
φ
→
C
∈
Cat
4
3
1
2
termoval
⊢
φ
→
TermO
⁡
C
=
a
∈
B
|
∀
b
∈
B
∃!
h
h
∈
b
H
a
5
4
eleq2d
⊢
φ
→
O
∈
TermO
⁡
C
↔
O
∈
a
∈
B
|
∀
b
∈
B
∃!
h
h
∈
b
H
a
6
elrabi
⊢
O
∈
a
∈
B
|
∀
b
∈
B
∃!
h
h
∈
b
H
a
→
O
∈
B
7
5
6
syl6bi
⊢
φ
→
O
∈
TermO
⁡
C
→
O
∈
B
8
7
imp
⊢
φ
∧
O
∈
TermO
⁡
C
→
O
∈
B
9
3
adantr
⊢
φ
∧
O
∈
B
→
C
∈
Cat
10
simpr
⊢
φ
∧
O
∈
B
→
O
∈
B
11
1
2
9
10
istermo
⊢
φ
∧
O
∈
B
→
O
∈
TermO
⁡
C
↔
∀
b
∈
B
∃!
h
h
∈
b
H
O
12
11
biimpd
⊢
φ
∧
O
∈
B
→
O
∈
TermO
⁡
C
→
∀
b
∈
B
∃!
h
h
∈
b
H
O
13
12
impancom
⊢
φ
∧
O
∈
TermO
⁡
C
→
O
∈
B
→
∀
b
∈
B
∃!
h
h
∈
b
H
O
14
8
13
jcai
⊢
φ
∧
O
∈
TermO
⁡
C
→
O
∈
B
∧
∀
b
∈
B
∃!
h
h
∈
b
H
O