Metamath Proof Explorer


Theorem istermoi

Description: Implication of a class being a terminal object. (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses isinitoi.b B = Base C
isinitoi.h H = Hom C
isinitoi.c φ C Cat
Assertion istermoi φ O TermO C O B b B ∃! h h b H O

Proof

Step Hyp Ref Expression
1 isinitoi.b B = Base C
2 isinitoi.h H = Hom C
3 isinitoi.c φ C Cat
4 3 1 2 termoval φ TermO C = a B | b B ∃! h h b H a
5 4 eleq2d φ O TermO C O a B | b B ∃! h h b H a
6 elrabi O a B | b B ∃! h h b H a O B
7 5 6 syl6bi φ O TermO C O B
8 7 imp φ O TermO C O B
9 3 adantr φ O B C Cat
10 simpr φ O B O B
11 1 2 9 10 istermo φ O B O TermO C b B ∃! h h b H O
12 11 biimpd φ O B O TermO C b B ∃! h h b H O
13 12 impancom φ O TermO C O B b B ∃! h h b H O
14 8 13 jcai φ O TermO C O B b B ∃! h h b H O