Metamath Proof Explorer


Theorem istos

Description: The predicate "is a toset". (Contributed by FL, 17-Nov-2014)

Ref Expression
Hypotheses istos.b B=BaseK
istos.l ˙=K
Assertion istos KTosetKPosetxByBx˙yy˙x

Proof

Step Hyp Ref Expression
1 istos.b B=BaseK
2 istos.l ˙=K
3 fveq2 f=KBasef=BaseK
4 fveq2 f=Kf=K
5 4 sbceq1d f=K[˙f/r]˙xbybxryyrx[˙K/r]˙xbybxryyrx
6 3 5 sbceqbid f=K[˙Basef/b]˙[˙f/r]˙xbybxryyrx[˙BaseK/b]˙[˙K/r]˙xbybxryyrx
7 fvex BaseKV
8 fvex KV
9 eqtr b=BaseKBaseK=Bb=B
10 eqtr r=KK=˙r=˙
11 breq r=˙xryx˙y
12 breq r=˙yrxy˙x
13 11 12 orbi12d r=˙xryyrxx˙yy˙x
14 13 2ralbidv r=˙xbybxryyrxxbybx˙yy˙x
15 raleq b=Bybx˙yy˙xyBx˙yy˙x
16 15 raleqbi1dv b=Bxbybx˙yy˙xxByBx˙yy˙x
17 14 16 sylan9bb r=˙b=BxbybxryyrxxByBx˙yy˙x
18 17 ex r=˙b=BxbybxryyrxxByBx˙yy˙x
19 10 18 syl r=KK=˙b=BxbybxryyrxxByBx˙yy˙x
20 19 expcom K=˙r=Kb=BxbybxryyrxxByBx˙yy˙x
21 20 eqcoms ˙=Kr=Kb=BxbybxryyrxxByBx˙yy˙x
22 2 21 ax-mp r=Kb=BxbybxryyrxxByBx˙yy˙x
23 9 22 syl5com b=BaseKBaseK=Br=KxbybxryyrxxByBx˙yy˙x
24 23 expcom BaseK=Bb=BaseKr=KxbybxryyrxxByBx˙yy˙x
25 24 eqcoms B=BaseKb=BaseKr=KxbybxryyrxxByBx˙yy˙x
26 1 25 ax-mp b=BaseKr=KxbybxryyrxxByBx˙yy˙x
27 26 imp b=BaseKr=KxbybxryyrxxByBx˙yy˙x
28 7 8 27 sbc2ie [˙BaseK/b]˙[˙K/r]˙xbybxryyrxxByBx˙yy˙x
29 6 28 bitrdi f=K[˙Basef/b]˙[˙f/r]˙xbybxryyrxxByBx˙yy˙x
30 df-toset Toset=fPoset|[˙Basef/b]˙[˙f/r]˙xbybxryyrx
31 29 30 elrab2 KTosetKPosetxByBx˙yy˙x