Metamath Proof Explorer


Theorem istrg

Description: Express the predicate " R is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypothesis istrg.1 M=mulGrpR
Assertion istrg RTopRingRTopGrpRRingMTopMnd

Proof

Step Hyp Ref Expression
1 istrg.1 M=mulGrpR
2 elin RTopGrpRingRTopGrpRRing
3 2 anbi1i RTopGrpRingMTopMndRTopGrpRRingMTopMnd
4 fveq2 r=RmulGrpr=mulGrpR
5 4 1 eqtr4di r=RmulGrpr=M
6 5 eleq1d r=RmulGrprTopMndMTopMnd
7 df-trg TopRing=rTopGrpRing|mulGrprTopMnd
8 6 7 elrab2 RTopRingRTopGrpRingMTopMnd
9 df-3an RTopGrpRRingMTopMndRTopGrpRRingMTopMnd
10 3 8 9 3bitr4i RTopRingRTopGrpRRingMTopMnd