Metamath Proof Explorer


Theorem istrnN

Description: The predicate "is a translation". (Contributed by NM, 4-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses trnset.a A=AtomsK
trnset.s S=PSubSpK
trnset.p +˙=+𝑃K
trnset.o ˙=𝑃K
trnset.w W=WAtomsK
trnset.m M=PAutK
trnset.l L=DilK
trnset.t T=TrnK
Assertion istrnN KBDAFTDFLDqWDrWDq+˙Fq˙D=r+˙Fr˙D

Proof

Step Hyp Ref Expression
1 trnset.a A=AtomsK
2 trnset.s S=PSubSpK
3 trnset.p +˙=+𝑃K
4 trnset.o ˙=𝑃K
5 trnset.w W=WAtomsK
6 trnset.m M=PAutK
7 trnset.l L=DilK
8 trnset.t T=TrnK
9 1 2 3 4 5 6 7 8 trnsetN KBDATD=fLD|qWDrWDq+˙fq˙D=r+˙fr˙D
10 9 eleq2d KBDAFTDFfLD|qWDrWDq+˙fq˙D=r+˙fr˙D
11 fveq1 f=Ffq=Fq
12 11 oveq2d f=Fq+˙fq=q+˙Fq
13 12 ineq1d f=Fq+˙fq˙D=q+˙Fq˙D
14 fveq1 f=Ffr=Fr
15 14 oveq2d f=Fr+˙fr=r+˙Fr
16 15 ineq1d f=Fr+˙fr˙D=r+˙Fr˙D
17 13 16 eqeq12d f=Fq+˙fq˙D=r+˙fr˙Dq+˙Fq˙D=r+˙Fr˙D
18 17 2ralbidv f=FqWDrWDq+˙fq˙D=r+˙fr˙DqWDrWDq+˙Fq˙D=r+˙Fr˙D
19 18 elrab FfLD|qWDrWDq+˙fq˙D=r+˙fr˙DFLDqWDrWDq+˙Fq˙D=r+˙Fr˙D
20 10 19 bitrdi KBDAFTDFLDqWDrWDq+˙Fq˙D=r+˙Fr˙D