Metamath Proof Explorer


Theorem isumcl

Description: The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1 Z=M
isumcl.2 φM
isumcl.3 φkZFk=A
isumcl.4 φkZA
isumcl.5 φseqM+Fdom
Assertion isumcl φkZA

Proof

Step Hyp Ref Expression
1 isumcl.1 Z=M
2 isumcl.2 φM
3 isumcl.3 φkZFk=A
4 isumcl.4 φkZA
5 isumcl.5 φseqM+Fdom
6 1 2 3 4 isum φkZA=seqM+F
7 fclim :dom
8 ffvelcdm :domseqM+FdomseqM+F
9 7 5 8 sylancr φseqM+F
10 6 9 eqeltrd φkZA