Metamath Proof Explorer


Theorem isumnn0nn

Description: Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumnn0nn.1 k=0A=B
isumnn0nn.2 φk0Fk=A
isumnn0nn.3 φk0A
isumnn0nn.4 φseq0+Fdom
Assertion isumnn0nn φk0A=B+kA

Proof

Step Hyp Ref Expression
1 isumnn0nn.1 k=0A=B
2 isumnn0nn.2 φk0Fk=A
3 isumnn0nn.3 φk0A
4 isumnn0nn.4 φseq0+Fdom
5 nn0uz 0=0
6 0zd φ0
7 5 6 2 3 4 isum1p φk0A=F0+k0+1A
8 fveq2 k=0Fk=F0
9 8 1 eqeq12d k=0Fk=AF0=B
10 2 ralrimiva φk0Fk=A
11 0nn0 00
12 11 a1i φ00
13 9 10 12 rspcdva φF0=B
14 0p1e1 0+1=1
15 14 fveq2i 0+1=1
16 nnuz =1
17 15 16 eqtr4i 0+1=
18 17 sumeq1i k0+1A=kA
19 18 a1i φk0+1A=kA
20 13 19 oveq12d φF0+k0+1A=B+kA
21 7 20 eqtrd φk0A=B+kA